قوانین ترمودینامیک
فرمت فایل دانلودی:
فرمت فایل اصلی: .doc
تعداد صفحات: 22
حجم فایل: 350
قیمت: 28000 تومان
بخشی از متن:
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : Word (..docx) ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 22 صفحه
قسمتی از متن Word (..docx) :
قوانین ترمودینامیک قانون صفرم ترمودینامیک در زبان یونانی Thermos به معنای “گرما و حرارت” و Dynamic به معنای “تغییرات” می باشد و لغت Thermodynamic بیانگر شاخه ای از علم فیزیک می باشد که به بررسی رفتار خواص کلی سیستم ها مانند فشار، دما، انرژی داخلی، حجم، آنتروپی و … می پردازد. از جمله مسایل مورد علاقه این علم می توان به بررسی قوانین حاکم بر تبدیل انرژی گرمایی به کار اشاره. قوانین اصلی حاکم بر این علم بسیار جالب بوده و مصادیق بسیاری در سایر علوم تجربی و نظری نیز دارند سعی خواهیم کرد که طی چند مطلب به تشریح ساده آنها بپردازیم. قانون صفرم (Zeroth law) برای هیچ یک از ما شکی وجود ندارد هنگامی که یک لیوان آب جوش را در یک ظرف بزرگتر آب سرد قرار می دهیم، پس از گذشت زمان لازم دمای آب درون لیوان و آب بیرون آن – درون ظرف بزرگتر – یکسان می شود. اینگونه بنظر می آید که میان دو منبع – منظور لیوان آب جوش و ظرف آب سرد – مفهومی بنام گرما به حرکت در می آید و از جایی که بیشتر است به سمت جایی که کمتر است حرکت می کند تا به تعادل گرمایی برسند. مثال دیگر آنکه هنگامی که یک لیوان آب یخ را بدست میگیرد بوضوح احساس می کنید چیزی – بنام گرما – از دست شما به سمت لیوان جاری می شود و ضمن سرد کردن دست شما به گرم کردن لیوان مشغول می شود. نمونه معکوس حالتی است که شما یک لیوان چای داغ را در درست می گیرد. در هر دو مورد اگر لیوان ها را برای مدت طولانی در دست نگاه داریم دیگر احساس خاصی نخواهیم داشت و دمای لیوان ها با دمای بدن ما یکسان می شود. این نمونه تجربه های به ظاهر ساده مصادیقی از قانون صفرم ترمودینامیک می باشند که معمولآ به اینصورت بیان می شود : “اگر A و B با جسم سومی مانند C در تعادل گرمایی باشند، حتمآ با یکدیگر نیز در تعادل خواهند بود.” دقت کنید که این خاصیت اگر چه بنظر ساده می آید اما در تمام موارد یکسان نیست و حتی شاید به نوعی ابهام هم داشته باشد. بعنوان مثال دلیلی وجود ندارد، اگر آقای A، گربه C را دوست داشته باشد و آقای B هم این گربه را دوست داشته باشد، در آنصورت آقایان A و B به یکدیگر علاقه داشته باشند. قانون صفرم ترمودینامیک در واقع تاکیدی است بر وجود یک کمیت بنام دما که مقدار آن در سیستم های ترمودینامیکی در حال تعادل یکسان می باشد. مشابه این قانون اگرچه در فیزیک الکتریسیته تعریف خاصی شاید نداشته باشد وجود دارد. شما وقتی دو منبع با پتانسیل های مختلف الکتریکی را از طریق یک سیم هادی به یکدیگر متصل کنید و مدار بسته ای تشکیل دهید، جریان الکتریسیته آنقدر در مدار جاری خواهد بود – و تلف خواهد شد – تا پتانسیل دو منبع یکسان شود. علت آنکه این قانون با شماره صفر مشخص می شود آن است که بسیار پایه ای بوده و نیز پس از گذشت سالها اسفتاده از سایر قوانین ترمودینامیک، در اوایل قرن بیستم به جمع قوانین ترمودینامیک پیوسته است.قانون صفرم ترمودینامیک بیان می کند که اگر دو سیستم با سیستم سومی در حال تعادل گرمایی باشند، با یکدیگر در حال تعادلند.قانون اول ترمودینامیکدر زبان یونانی Thermos به معنای “گرما و حرارت” و Dynamic به معنای “تغییرات” می باشد و لغت Thermodynamic بیانگر شاخه ای از علم فیزیک می باشد که به بررسی رفتار خواص کلی سیستم ها مانند فشار، دما، انرژی داخلی، حجم، آنتروپی و … می پردازد. از جمله مسایل مورد علاقه این علم می توان به بررسی قوانین حاکم بر تبدیل انرژی گرمایی به کار اشاره. قوانین اصلی حاکم بر این علم بسیار جالب بوده و مصادیق بسیاری در سایر علوم تجربی و نظری نیز دارند سعی خواهیم کرد که طی چند مطلب به تشریح ساده آنها بپردازیم. قانون صفرم (Zeroth law) برای هیچ یک از ما شکی وجود ندارد هنگامی که یک لیوان آب جوش را در یک ظرف بزرگتر آب سرد قرار می دهیم، پس از گذشت زمان لازم دمای آب درون لیوان و آب بیرون آن – درون ظرف بزرگتر – یکسان می شود. اینگونه بنظر می آید که میان دو منبع – منظور لیوان آب جوش و ظرف آب سرد – مفهومی بنام گرما به حرکت در می آید و از جایی که بیشتر است به سمت جایی که کمتر است حرکت می کند تا به تعادل گرمایی برسند. مثال دیگر آنکه هنگامی که یک لیوان آب یخ را بدست میگیرد بوضوح احساس می کنید چیزی – بنام گرما – از دست شما به سمت لیوان جاری می شود و ضمن سرد کردن دست شما به گرم کردن لیوان مشغول می شود. نمونه معکوس حالتی است که شما یک لیوان چای داغ را در درست می گیرد. در هر دو مورد اگر لیوان ها را برای مدت طولانی در دست نگاه داریم دیگر احساس خاصی نخواهیم داشت و دمای لیوان ها با دمای بدن ما یکسان می شود. این نمونه تجربه های به ظاهر ساده مصادیقی از قانون صفرم ترمودینامیک می باشند که معمولآ به اینصورت بیان می شود : “اگر A و B با جسم سومی مانند C در تعادل گرمایی باشند، حتمآ با یکدیگر نیز در تعادل خواهند بود.” دقت کنید که این خاصیت اگر چه بنظر ساده می آید اما در تمام موارد یکسان نیست و حتی شاید به نوعی ابهام هم داشته باشد. بعنوان مثال دلیلی وجود ندارد، اگر آقای A، گربه C را دوست داشته باشد و آقای B هم این گربه را دوست داشته باشد، در آنصورت آقایان A و B به یکدیگر علاقه داشته باشند. قانون صفرم ترمودینامیک در واقع تاکیدی است بر وجود یک کمیت بنام دما که مقدار آن در سیستم های ترمودینامیکی در حال تعادل یکسان می باشد. مشابه این قانون اگرچه در فیزیک الکتریسیته تعریف خاصی شاید نداشته باشد وجود دارد. شما وقتی دو منبع با پتانسیل های مختلف الکتریکی را از طریق یک سیم هادی به یکدیگر متصل کنید و مدار بسته ای تشکیل دهید، جریان الکتریسیته آنقدر در مدار جاری خواهد بود – و تلف خواهد شد – تا پتانسیل دو منبع یکسان شود. علت آنکه این قانون با شماره صفر مشخص می شود آن است که بسیار پایه ای بوده و نیز پس از گذشت سالها اسفتاده از سایر قوانین ترمودینامیک، در اوایل قرن بیستم به جمع قوانین ترمودینامیک پیوسته است.قانون اول ترمودینامیک که به عنوان قانون بقای کار و انرژی نیز شناخته می شود، می گوید که حالت تعادل ماکروسکوپی یک سیستم با کمیتی به نام انرژی درونی (U) بیان می شود. انرژی درونی دارای خاصیتی است که برای یک سیستم منزوی (ایزوله) داریم:U=مقدار ثابتاگر به سیستم اجازه? برهم کنش با محیط داده شود، سیستم از حالت ماکروسکوپی اولیه? خود به حالت ماکروسکوپی دیگری منتقل می شود که تغییر انرژی درونی را برای این تحول (فرآیند) می توان به شکل زیر نشان داد:?U = Q ? Wکه در این فرمول W، کار ماکروسکوپی انجام شده توسط سیستم در برابر نیروی خارجی و Q مقدار گرمای جذب شده توسط سیستم در طی این فرآیند است.نمادگذاریشمیی و فیزیکچون در شیمی و فیزیک سیستم مورد توجه است، گرما و کاری که به سیمتم داده می شود مورد نظر ماست و انرژی درونی را Q+W در نظر می گیریم.(سیستم را بستهدر حالت سکون و در غیاب میداانها در نظر میگیریم) wheredU یک افزایش بی اندازه کوچک در انرژی درونی سیستم است. ?Q یک مقدار بی اندازه کوچک از گرما که به سیستم افزوده می شود ?W یک کار بی اندازه کوچک که بر روی سیستم انجام می شود و ? نماد دیفرانسیل است. قوانین فیزیک چه محدودیتهایی بر عملکرد ماشین های بخار و سایر ماشین های تولید کننده انرژی مکانیکی تحمیل می کنند. ترمودینامیک درباره تبدیل یک شکل انرژی به شکلی دیگر، به ویژه تبدیل گرما به سایر شکلهای انرژی بحث می کند. این کار با مطالعه روابط بین پارامترهای صرفا ماکروسکوپی صورت می گیرد که رفتار سیستمهای فیزیکی را توصیف می کنند. این گونه توصیف ماکروسکوپی (و در مقیاس بزرگ)، لزوما تا حدی خام است، چرا که همه جزئیات کوچک مقیاس و میکروسکوپی را نادیده می گیرد. اما در کاربردهای عملی، این جزئیات اغلب مهم نیستند. برای مثال، مهندسی که رفتارهای گازهای حاصل از احتراق را در سیلندر یک موتور اتومبیل بررسی می کند می تواند با کمیتهای ماکروسکوپی همچون دما، فشار، چگالی و ظرفیت حرارتی کار خود را پیش ببرد. در واقع دانشمندان به دنبال یافتن پاسخ این پرسش بودند که آیا می توان ماشینی به طور دائمی کار مکانیکی انجام دهد. آنها مدتها بر روی این موضوع تحقیق کردند و تعدادی از محققین نیز طرحهایی برای این کار پیشنهاد نمودند. شکل زیر یکی از این طرحها را نشان می دهد. هدف این بود که ابزار ساخته شده بدون مصرف هیچ گونه سوخت یا هر گونه انرژی ورودی دیگر، کار خروجی بی پایانی را تامین کند. در شکل میله های کوتاه لولا شده، که به میخ ها تکیه دارند، وزنه ها را به چرخ متصل می کنند. وقتی میله ها در وضعیت نشان داده شده هستند، عدم توازنی در توزیع وزن وجود دارد که موجب ایجاد یک گشتاور ساعتگرد خواهد شد که چرخ را در جهت نشان داده شده می چرخاند. طراح می پنداشت این گشتاور همیشگی است و نه تنها چرخش چرخ را حفظ می کند، بلکه به طور دائمی به محور آن انرژی می دهد. اما آنچه در عمل اتفاق می افتد اینست که پس از یک دور چرخیدن، جرم ها در یک وضعیت متعادل باقی می مانند و حرکت متوقف می شود. در این راه کوششهای فراوانی صورت گرفت؛ در شکلهای زیر می توانید نمونه هایی از طرحهای پیشنهادی را ببینید. آیا می توانید بگویید چرا این ماشینها کارایی عملی ندارند؟ یافته های حاصل از آزمایشان نشان داد که ساختن چنین ماشینی غیر ممکن است. قانون اول ترمودینامیک نیز چیزی نیست، مگر بیان همین بقای انرژی. اگر تنها راه تغییر دادن انرژی یک دستگاه، انجام دادن کار روی دستگاه و یا واداشتن دستگاه به انجام کار بود، مسئله ساده بود. هر کاری که روی دستگاه انجام می دادیم در نهایت به صورت انرژی مکانیکی پس گرفته می شد. دادن گرما به دستگاه هم سبب بالا رفتن دمای آن می شود و وقتی جسم به دمای اولیه اش بازمی گشت، گرمایی را که قبلا گرفته بود عینا پس می داد. به این ترتیب می شد از نوعی انرژی مکانیکی داخلی دستگاه سخن گفت که عبارت بود از جمع جبری کار انجام یافته به وسیله دستگاه و کار انجام شده روی آن؛ در کنار آن دستگاه دارای یک محتوای گرمایی بود، که از جمع جبری گرمای داده شده به دستگاه و گرمای گرفته شده از آن محاسبه می گردید. آزمایش ژول نشان داد که این تئوری نادرست است. دمای یک جسم را می شد با انجام دادن کار روی آن تغییر داد؛ یک جسم می توانست گرما بگیرد (مثلا ماشین بخار) و کار مکانیکی انجام دهد. به این ترتیب معلوم شد که نمی توان از گرمایی که در مقدار معینی ماده وجود دارد و یا از انرژی مکانیکی آن به صورت جدا از هم سخن گفت. جسم فقط دارای یک مخزن انرژی است، که آن را “انرژی داخلی” می نامیم. هم کار مکانیکی و هم گرما در این مخزن سهیم اند؛ برداشت انرژی از این مخزن می تواند به صورت کار مکانیکی و یا گرما باشد. این، قانون اول ترمودینامیک است: هر گاه فرآیندی را که با گرما و کار سر و کار دارد به کار گیریم تا دستگاهی را از یک حالت آغازین به یک حالت جدید برسانیم، تغییر انرژی درونی سیستم مقدار ثابتی دارد که مستقل از جزئیات فرآیند است. تغییرات انرژی درونی برابر مجموع کار انجام شده بر روی سیستم و گرمای داده شده به آن می باشد. به عبارت دیگر اگر تغییرات انرژی درونی را با (Δu)، کار انجام شده بر روی سیستم را با (w) و گرمای داده شده به آن را با (Q) نشان دهیم، خواهیم داشت: Q+W=Δu اما توجه کنید که مقدار کار یا میزان گرما به جزئیات و مسیر فرآیند وابسته اند.برای ساده تر کردن این مدل سازی مطالب زیر را فرض نموده ایم: 1. گاز ایده آل است، پس دما نشان دهنده میزان انرژی درونی آن می باشد. 2. فشار اتمسفر در محاسبات منظور نشده است؛ یعنی فرض کرده ایم که آزمایش در خلاء انجام می شود. 3. سطح مقطع پیستون دیسکی به قطر 4/67 سانتی متر است. 4. تعداد مولهای گاز 3- 10*1/023 می باشد، که در این صورت مقدار گردشده nR برابر 0/01 ژول بر درجه کلوین خواهد بود. 5. بازه تغییرات VP و T محدود است. تغییرات دمایی بایستی در محدوده 2 تا 200 درجه کلوین صورت گیرد و حداکثر فشار مجاز نیز 200 کیلو پاسکال است. حداقل حجم ممکن هم 21cc است. این مقادیر به طور تقریبا اتفاقی انتخاب شده اند، اما نشان می دهند که حجم یا دما هیچ گاه نمی تواند صفر شود؟ آیا می توانید دلیل این امر را توضیح دهید؟
برای مشاهده توضیحات فایل قوانین ترمودینامیک اینجا کلیک کنید
برای دانلود فایل باکیفیت قوانین ترمودینامیک روی دکمه زیر کلیک نمائید
✔️ دارای پشتیبانی 24 ساعته تلفنی و پیامکی و ایمیلی و تلگرامی
✔️ خرید از فروشگاه سیدا بزرگترین و معتبرترین فروشگاه فایل ایران
✔️ دانلود فوری و مستقیم بلافاصله بعد از پرداخت
✔️ دارای توضیحات مختصر قبل از خرید در صفحه محصول
✔️ قوانین ترمودینامیک
✔️ پشتیبانی 24 ساعته پیامکی با شماره 09214087336